Finer Analysis of Characteristic Curve and Its Application to Exact, Optimal Controllability, Structure of the Entropy Solution of a Scalar Conservation Law with Convex Flux
نویسنده
چکیده
Goal of this thesis is to study four problems. In chapters 3-5, we consider scalar conservation law in one space dimension with strictly convex flux. First problem is to know the profile of the entropy solution. In spite of the fact that, this was studied extensively in last several decades, the complete profile of the entropy solution is not well understood. Second problem is the exact controllability. This was studied for Burgers equation and some partial results are obtained for large time. It was a challenging problem to know the controllability for all time and also for general convex flux. In a seminal paper [25], Dafermos introduces the characteristic curves and obtain some qualitative properties of a solution of a convex conservation law. In this thesis, we further study the finer properties of these characteristic curves. Here we solve these two problems in complete generality. In view of the explicit formulas of Lax Oleinik [31], Joseph Gowda [40], target functions must satisfy some necessary conditions. In this thesis we prove that these are also sufficient. Method of the proof depends highly on the characteristic methods and explicit formula given by Lax Oleinik and the proof is constructive. Third problem is to solve the optimal controllability problem. In chapter 5 we derive a method to obtain a solution of an optimal control problem for the scalar conservation laws with convex flux. By using the method of descent, this type of problem was considered by Castro-Palacios-Zuazua in [23] for the Burgers equation. Our approach is simple and based on the explicit formulas of Hopf and Lax-Olenik. Last but not the least is about the problem of total variation bound for solution of scalar conservation laws with discontinuous flux. For the scalar conservation laws with discontinuous flux, an infinite family (A,B)-interface entropies are introduced and each one of them has been shown to form an L-contraction semigroup (see, [8]). One of the main unsettled questions concerning conservation law with discontinuous flux is boundedness of total variation of the solution. Away from the interface, boundedness of total variation of the solution has been proved in a recent paper [16]. In the chapter 6, we discuss this particular issue in detail and produce a counter example to show that the solution, in general, has unbounded total variation near the interface. In fact this example illustrates that smallness of BV norm of the initial data is immaterial. We hereby settled the question of determining for which of the aforementioned (A,B) pairs, the solution will have bounded total variation in case of strictly convex fluxes. 1 te l-0 08 74 97 6, v er si on 1 20 O ct 2 01 3
منابع مشابه
Solving 1D Conservation Laws Using Pontryagin's Minimum Principle
This paper discusses a connection between scalar convex conservation laws and Pontryagin’s minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is eq...
متن کاملExact Controllability of Scalar Conservation Laws with an Additional Control in the Context of Entropy Solutions
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion de documents scientifiques de niveau r...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملUniform Controllability of Scalar Conservation Laws in the Vanishing Viscosity Limit
We deal with viscous perturbations of scalar conservation laws on a bounded interval with a general flux function f and a small dissipation coefficient ε. Acting on this system on both endpoints of the interval, we prove global exact controllability to constant states with nonzero speed. More precisely, we construct boundary controls so that the solution is driven to the targeted constant state...
متن کاملNumerical Schemes for Conservation Laws via Hamilton - Jacobi Equations
We present some difference approximation schemes which converge to the entropy solution of a scalar conservation law having a convex flux. The numerical methods described here take their origin from approximation schemes for Hamilton-Jacobi-Bellman equations related to optimal control problems and exhibit several interesting features: the convergence result still holds for quite arbitrary time ...
متن کامل